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Local rigidity in sandpile models
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We address the problem of the role of the concept of local rigidity in the family of sandpile systems. We
define rigidity as the ratio between the critical energy and the amplitude of the external perturbation and we
show, in the framework of the dynamically driven renormalization group, that any finite value of the rigidity in
a generalized sandpile model renormalizes to an infinite value at the fixed point, i.e., on a large scale. The
fixed-point value of the rigidity allows then for a nonambiguous distinction between sandpilelike systems and
diffusive systems. Numerical simulations support our analytical results.
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I. INTRODUCTION

The concept of self-organized criticality~SOC! @1–3# has
been proposed as a unifying theoretical framework to
scribe a vast class of driven systems that evolve ‘‘sponta
ously’’ to a stationary state characterized by power-law d
tributions of dissipation events. While originally SO
systems were associated with the absence of tuning pa
eters, it is now clear@4,3# that most of the proposed system
show a critical behavior only in the limit of an infinite sep
ration of time scales, i.e., if some suitable parameter~e.g.,
the dissipation and the driving rate in sandpile models@5#,
the temperature in some growth models@6#, etc.! is set to
zero. These results suggested a new definition of SOC@7# as
the theory of dynamical processes that lead a system to
critical steady state if the critical value of the control para
eter is zero.

The stabilizing effect of a threshold@8# in the class of
sandpile models is discussed by introducing alocal rigidity
defined as the ratio between the critical energy and the
plitude of the external perturbation,r[«c /d«. A finite rigid-
ity allows the system to assume a large number of metast
configurations and these let the process show a power
distribution of avalanches. In Ref.@8# it has been shown by
means of numerical simulations that in the limitr→0 the
system becomes a diffusive one characterized by only
nite avalanches. In this paper we show how, in the fram
work of the so-called dynamically driven renormalizatio
group ~DDRG! @9,10#, a finite rigidity in the microscopic
dynamics is crucial in order for the system to reach spon
neously a critical stationary state instead of a diffusive o
The basic idea is that at large scale the value of the rigi
does not depend on the microscopic value and that
‘‘coarse-grained’’ value allows for a nonambiguous distin
tion between a diffusive and a SOC system.

II. THE RENORMALIZATION OF THE RIGIDITY

In sandpile models we assign an integer variable~‘‘en-
ergy’’! « i on each sitei of a d-dimensional hypercubic lat
tice. At each time step an energy grain is added on a
domly chosen site, and then the system is allowed to re
according to a particular stability criterion depending on
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-
e-
-

m-

he
-

-

le
w

-
-

-
.
y
is
-

n-
x

fixed threshold~e.g., the energy, or the slope—defined as
difference between the energy of two nearest neighbor
exceeding a critical value!. Infinite slow driving, i.e., an in-
finite separation of time scales, is built into the model: duri
the updating process the external input stops. The orig
Bak-Tang-Wiesenfeld~BTW! sandpile model@1# is a critical
height model with«c54 and external inputd«51.

We consider a generalized sandpile model with criti
height «c and external perturbationd« for the microscopic
dynamics. If« i.«c at timet then« i50 at timet11 and the
q nearest neighbors of sitei increase their value of« i /q. At
the generic scale these quantities have the values«c

(k) and
d« (k). The height of the stable sites is less than«c

(k)2d« (k),
for the critical sites the energy lies between«c

(k)2d« (k) and
«c

(k) while for unstable sites it is larger than«c
(k) . We study

the behavior of«c
(k) andd« (k) under the renormalization flow

of the DDRG that could be formally written as

«c
(k11)5 f ~«c

(k) ,d« (k);r (k),P(k)!,

d« (k11)5g~«c
(k) ,d« (k);r (k),P(k)!, ~1!

where r (k) ~density of critical sites! and P(k)

[(p1
(k) ,p2

(k) ,p3
(k) ,p4

(k)) (pn is the probability that in a top-
pling the energy is distributed exactly ton nearest neighbors!
are the parameters characterizing the state at the ge
scalek. In principle, we have to couple these two equatio
to those that determine the renormalization ofr (k) andP(k);
for the sake of simplicity, having extended the paramet
space, we assume that the flow of the new parameter
orthogonal to the space defined by the old ones. We t
accordingly fixr (k) and P(k) to their fixed-point valuesr*
and P* as computed in Ref.@9#. Their values arer*
50.468 andP* 5(0.240,0.442,0.261,0.057). The validity o
this approximation will be checked by numerical simul
tions. Our transformation will have the form

« (k11)5 f ~«c
(k) ,d« (k);r* ,P* !,

d« (k11)5g~«c
(k) ,d« (k);r* ,P* !. ~2!

The symbols used are shown in Figs. 1 and 2.
©2002 The American Physical Society33-1
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Let us consider now a single path as an example of
transformation we want to obtain. We have a 232 cell char-
acterized by a labela specifying the number of critical sites
Thea51 configuration is not considered because of aspan-
ning rule that imposes the exclusion of those processes
do not relax within the cell before they transfer energy o
side. Every configurationa has a mean height^«a& that we
calculate in the following section. One of the possible ev
lution from the configurationa53a state is shown in Fig. 3

This means that at the scalek11 the mean height of the
considered cell is critical with probability

p[wa53
(a) ~r* !

1

6
p2*

1

4
p3*

1

6
p2* . ~3!

As a matter of fact, the cell has a probabilityp to be a
critical site at the scalek11. The complete renormalizatio
flow is therefore a sum over all the configuration and over
the possible paths of terms likep^«a53

(k) &. In the same pro-
cess, we observe that with probabilityp the quantity given
outside of the cell,d« (k11), is (3/2)d« (k)3 flows of energy
d« (k) are lost outside the cell passing through two sides
means that for this transformation we have to distingu
paths transferring the same energy through a different n
ber of sides. The general transformations are

«c
(k11)5(

a
wa~r* !F ^«a

(k)&(
i

Pi ,a~P* !G ,
d« (k11)5(

a
wa~r* !F(

i
Pi ,a

n,m~P* !
n

m
d« (k)G , ~4!

FIG. 2. Thea configurations with relative statistical weights.

FIG. 1. Critical, stable, and unstable sites.
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where Pi ,a are the probabilities relative to time evolution
that transfer energy outside of the cell, whilePi ,a

n,m refers to a
process that letn quanta going throughm sides.

We compute now the average energy per site in all
configurations. We generalize the simple mean-field ar
ment described in Ref.@11#, making the simpler nontrivial
assumption for the probability distribution of the energ
P(«)5a1b «. The normalization

E
0

«c
d« P~«!51, ~5!

implies thatb52(12a «c)/«c
2 .

The average energy is then expressed in term of the
rametera,

^«&[E
0

«c
d« « P~«!5

2

3
«c2

1

6
a«c

2 . ~6!

Following Ref. @11# we find thata.0.277/«c . The average
energy of stable and critical sites is then,

^«&stable[

E
0

«c2d«

d« « P~«!

E
0

«c2d«

d« P~«!

5

E
0

«c2d«

d«S a «1
2

«c
2
«2~12a «c!D

E
0

«c2d«

d«S a1
2

«c
2
«~12a «c!D

5

2

3
2

1

6
a «c2

d«

«c
S 4

3
2

5

6
a «cD1O~d«!2

1

«c
F12

d«

«c
~12a «c!G

5^«&2
2

3
d«S 12

1

4
a2«c

2D1O~d«!2, ~7!

FIG. 3. One of the possible time evolutions starting from ana
53 configuration and transferring energy outside of the cell;
every step the relative probability is indicated.
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^«&crit ical[

E
«c2d«

«c
d« « P~«!

E
«c2d«

«c
d« P~«!

5

E
«c2d«

«c
d«S a«1

2

«c
2
«2~12a«c!D

E
«c2d«

«c
d«S a1

2

«c
2
«~12a«c!D

5

«c~22a «c!2d«S 22
7

2
a «cD

~22a «c!F12
d«

«c

12a «c

22a «c
G

5«c2d«

12
5

2
a «c

22a «c
1O~d«!2. ~8!

If we put a50.277/«c in these expressions we obtain

^«&stable50.6205«c20.539d«, ~9!

^«&crit ical5«c20.1785d«. ~10!

The average energy per site for different configurations
now be calculated as

^«a52&5
1

4
@2 ^«&crit ical12 ^«&stable#50.810«c20.359d«,

~11!

^«a53&5
1

4
@3 ^«&crit ical1^«&stable#50.905«c20.269d«,

~12!

^«a54&5^«&crit ical5«c20.1785d«. ~13!

Equations for the renormalization flow have the form

«c
(k11)5a «c

(k)2b d« (k),

FIG. 4. Timet: the probability relative to the paths in the figu
is 1

4 p11
1
2 p21

3
4 p31p4.

FIG. 5. Timet11: the probability associated with the paths
the figure is1

2 p11
5
6 p21p31p4.
01613
n

d« (k11)5c d« (k), ~14!

where the coefficientsa,b, and c obviously depend on the
fixed point parameters. If we divide the two equations,
calling the definition of the rigidity, we obtain

r (k11)5
a

c
r (k)2

b

c
. ~15!

The fixed point of the rigidity corresponds to settingr (k11)

5r (k)5r * ,

r * 5
b

a2c
. ~16!

The following section deals with the calculation of the coe
ficientsa,b, andc.

III. ANALYTICAL RESULTS

To calculate the coefficientsa,b, andc we have to distin-
guish between four different kind of configurations, each o
with the relative weightswa(r) as calculated in Ref.@9#.

a52. We consider at timet one of the toppling repre-
sented in Fig. 4 and possible developments at timet11 in
Fig. 5.

All the paths described transfer energy outside the c
the associated probabilities are given in captions. Configu
tion a52 then contributes with the term

«c
(k11)5wa52~r!^«a52

(k) &S 1

4
p11

1

2
p21

3

4
p31p4D

3S 1

2
p11

5

6
p21p31p4D1•••, ~17!

to the renormalization of the critical energy. Moreover, ea
of the described paths transfer only a quantum of ene
outside of the cell, so

FIG. 6. The behavior of the critical energy«c
(k) at the scalek in

the BTW sandpile model.
3-3
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d« (k11)

d« (k)
5wa52~r!S 1

4
p11

1

2
p21

3

4
p31p4D

3S 1

2
p11

5

6
p21p31p4D1•••. ~18!

The details of the calculations regarding paths from c
figurationsa53a, 3b, and 4 are given in the Appendix.

The final result is obtained by summing all these contr
utes that we have explicitly calculated with the respect
weights. We find for the coefficients the following values:

a50.2660.03, b50.1060.02, c50.2660.05.
~19!

We finally obtain thata and c are equal, even though th
errors associated are relatively large. These errors are re
to the parameters of the fixed point. Since they have o
three significant digits, this results in an error of order 1023.

FIG. 7. Numerical renormalization ofd« in the BTW.

FIG. 8. The behavior of the critical energy at a generic scak
for the Zhang model.
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We then find that the fixed point spontaneously reach
by a sandpile model corresponds to an infinite value of
rigidity. It means that every finite value for the microscop
dynamics renormalizes to an infinite one on a large scale

The difference with a diffusive system is now clear: in t
diffusive case a particle added from outside can always
out of the system from the boundaries, while in a SOC s
tem this is avoided by the value of the rigidity as bigger
observed from a large scale.

FIG. 9. Numerical renormalization ofd« in the Zhang model.

FIG. 10. Timet: the probability relative to the paths in the figur
is 1

4 p11
1
2 p21

3
4 p31p4.
3-4
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IV. NUMERICAL RESULTS

We present here the results of simulations made on B
@1# and Zhang@13# models. We have measured for the
systems the critical energy and the average flow transfe
from the boundaries at a generic scalek. Critical energy is
defined as follows: we consider an external perturbation o
site in a coarse-grained cell (k cell! of size l (k)3 l (k) and we
look at the avalanches starting from this coarse-grained
If the avalanche transfers energy outside the givenk cell we
compute the average energy«c

(k) of that k cell before the
toppling; as a matter of fact, thatk cell is critical with a
probability given by the frequency of the avalanches tra
ferring energy outside thek cell itself. Moreover, we define
the energy transferredd« (k) at the scalel (k) as the number of
grains going outside thek cell divided by the number o
boundaries crossed and by the lengthl (k) ~this is the trivial
scaling!.

If we look at numerical results~Fig. 6! we note that the
critical energy at large scale is the average energy@12# of the
system and this is not surprising since at the scale of
system size this is exactly what we compute. As for the
havior of d« ~Fig. 7! one gets that in the limitk→` it goes
to zero. This result confirms the idea that the fixed-po
value for the rigidity is infinite, signalling a clear differenc
with respect to usual diffusive systems. The same qualita
results are obtained for the Zhang model@13# ~See Figs. 8
and 9!.

V. CONCLUSIONS

In summary, we have investigated both in the framew
of the dynamically driven renormalizaton group scheme a
by numerical simulations, the role of the so-called local
gidity in sandpile models. The local rigidity is defined as t
ratio between the critical energy and the amplitude of
external perturbation, both at the microscopic scale. It tu
out that, under the renormalization flow equations of
DDRG, the local rigidity renormalizes to an infinite fixed
point value both for the BTW model and the Zhang mod
while for a typical diffusive system one would expect a va

FIG. 11. Evolutions for thea53b configuration.

FIG. 12. Eventsa andb for the a54 configuration.
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ishing value. Numerical simulations of coarse-grained sa
pile models confirm this picture.
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APPENDIX

a53a. In Fig. 10 we show all the possible paths starti
from the perturbation of the critical site.

The probability relative to the first event at timet is the
same as before,14 p11 1

2 p21 3
4 p31p4. At time t11 we have

~a! 1
4 p11 1

6 p2 for the first two events in Fig. 10,16 p21 1
4 p3

for the third ~they are distinguishable only with respect
renormalization ofd«); ~b! 1

6 p21 1
4 p3 for the first two

events,1
4 p31p4 for the third; ~c! 1

4 p11 1
6 p2.

At time t12 we have1
4 p11 1

3 p21 1
4 p3 for the first two

and 1
6 p21 1

2 p31p4 for the third; in the renormalization of«c
we have to consider only the sum12 p11 5

6 p21p31p4. So we
can write

«c
(k11)5•••1wa53

(a) ~r!^«a53
(k) &S 1

4
p11

1

2
p21

3

4
p31p4D

3H S 1

2
p11

5

6
p21p31p4D F11S 1

4
p11

1

6
p2D G J

1••• ~A1!

FIG. 13. Possible paths from eventa.

TABLE I. Probabilities relative to the events in Fig. 13.

t11 t12 t13

~1! 1
2 p11

1
2 p21

1
4 p3

1
4 p11

1
6 p2

1
4 p11

1
3 p21

1
4 p3

~2! 1
6 p21

1
4 p3

1
4 p11

1
6 p2

1
4 p11

1
3 p21

1
4 p3

~3! 1
6 p21

1
4 p3

1
6 p21

1
4 p3

1
6 p21

1
2 p31p4

~4! 1
4 p31p4

1
6 p21

1
4 p3

~5! 1
4 p11

1
6 p2

1
6 p21

1
4 p3

~6! 1
4 p31p4

~7! 1
4 p11

1
6 p2
3-5
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and

d« (k11)

d« (k)
5•••1wa53

(a) ~r!S 1

4
p11

1

2
p21

3

4
p31p4D H S 1

2
p1

1
1

2
p21

1

4
p3D1S 1

6
p21

1

4
p3D F S 1

4
p11

1

3
p2

1
1

4
p3D ~211!1S 1

6
p21

1

2
p31p4D 3

2G
1S 1

6
p21

1

4
p3D S 1

2
p11

5

6
p21p31p4D

1S 1

4
p31p4D F S 1

4
p11

1

3
p21

1

4
p3D S 3

2
11D
01613
1S 1

6
p21

1

2
p31p4D 4

3G S 1

4
p11

1

6
p2D

3S 1

2
p11

5

6
p21p31p4D J 1••• ~A2!

for the contributions coming from thea53a configuration.
a53b. We can compute the probabilities shown in F

11.
At time t we have to distinguish between two kinds

events: the toppling on a single site~this term is considered
two times to include the toppling on the other site! and the

one on two sites. The statistical weights are (1
4 p11 1

3 p2

1 1
4 p3) and (1

6 p21 1
2 p31p4), respectively. At timet11 both

the events leave one flow going outside the cell, so we ha
e first

the
«c
(k11)5•••1wa53

(b) ~r!^«a53
(k) &H 2S 1

4
p11

1

2
p21

3

4
p31p4D S 1

2
p11

5

6
1p31p4D

1S 1

6
p21

1

2
p31p4D F12S 1

2
p11

5

6
p2D 2G J 1•••, ~A3!

d« (k11)

d« (k)
5•••1wa53

(b) ~r!H 2S 1

4
p11

1

2
p21

3

4
p31p4D S 1

2
p11

5

6
1p31p4D

1S 1

6
p21

1

2
p31p4D F12S 1

2
p11

5

6
p2D 2G J 1•••. ~A4!

a54. In a cell with all critical sites the number of possible time evolutions grows enormously. In Fig. 12 we show th
two possible events, with probabilitiesp(a)5 1

4 p11 1
3 p21 1

4 p3 andp(b)5 1
6 p21 1

2 p31p4. The paths coming froma are shown
in Fig. 13 and the relatives probabilities in Table I.

Now we have to compute 224 paths from theb event. The final result, avoiding details, for the renormalization of
critical height is

«c
(k11)5•••1wa54~r!H 2S 1

4
p11

1

3
p21

1

4
p3D H S 1

2
p11

5

6
p21p31p4D F11S 1

4
p11

1

6
p2D1S 1

4
p11

1

6
p2D 2G J

1S 1

6
p21

1

2
p31p4D F12S 1

4
p1D 2

2S 1

4
p11

1

6
p2D S 3

4
p11

1

6
p2D S 1

2
p11

1

6
p2D G J . ~A5!

If we introduce the quantities

p1[
1

4
p11

1

2
p21

3

4
p31p4 , p2[

1

2
p11

5

6
p21p31p4 , p3[

1

2
p11

1

2
p21

1

4
p3 ,

p4[
1

6
p21

1

4
p3 , p5[

1

4
p11

1

3
p21

1

4
p3 , p6[

1

6
p21

1

2
p31p4 ,

p7[
1

4
p11

1

6
p2 , p8[

1

2
p11

1

6
p2 , p9[

1

4
p31p4 , p10[

3

4
p11

1

2
p21

1

4
p3 ,

then we can write down the renormalization ofd« as
3-6
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dE(k11)

dE(k)
5•••1wa54~r!H 2 p5Fp31p4F2 p71p4S 11p21

5

2
p51

4

3
p6D G1p9S 4

3
p51

5

4
p6D1p7p2

1p7~211!1p4F3

2
1S 3

2
1

3

2Dp51p6G1p4F S 3

2
11Dp51

4

3
p6G1p9F S 21

4

3Dp51
5

3
p6G

1p7 p21p9H S 3

2
11Dp71p4S 4

3
1

8

3
p51

5

4
p6D1p4S 7

3
p51

5

4
p6D

1p9F S 5

3
1

5

4Dp51
3

2
p6G1p7 p2J 1p7Fp31p4S p213p5

3

2
p6D1p9S 5

2
p51

4

3
p6D1p7 p2G G

1p63F S p10
2 2

1

16
p1

2D12S p7 p51
1

4
p1 p4D S 5p51

5

2
p6D12S p7 p61

1

4
p1 p9D S 5

2
p51

4

3
p6D

1~2 p7 p41p4
2!S 10p51

17

3
p6D1S 2p7

1

4
p11p7

2Dp212~p4
21p9 p5!S 5p51

35

12
p6D

1~2 p9 p41p9
2!S 5

2
p51

3

2
p6D G J . ~A6!
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