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Local rigidity in sandpile models
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We address the problem of the role of the concept of local rigidity in the family of sandpile systems. We
define rigidity as the ratio between the critical energy and the amplitude of the external perturbation and we
show, in the framework of the dynamically driven renormalization group, that any finite value of the rigidity in
a generalized sandpile model renormalizes to an infinite value at the fixed point, i.e., on a large scale. The
fixed-point value of the rigidity allows then for a nonambiguous distinction between sandpilelike systems and
diffusive systems. Numerical simulations support our analytical results.
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[. INTRODUCTION fixed thresholde.g., the energy, or the slope—defined as the
difference between the energy of two nearest neighbors—
The concept of self-organized criticalitOC [1-3] has  exceeding a critical valyelnfinite slow driving, i.e., an in-
been proposed as a unifying theoretical framework to definite separation of time scales, is built into the model: during
scribe a vast class of driven systems that evolve “spontanghe updating process the external input stops. The original
ously” to a stationary state characterized by power-law disBak-Tang-Wiesenfel@BTW) sandpile mode[1] is a critical
tributions of dissipation events. While originally SOC height model withe =4 and external inpube=1.
systems were associated with the absence of tuning param- We consider a generalized sandpile model with critical
eters, it is now cleal4,3] that most of the proposed systems heighte. and external perturbatiode for the microscopic
show a critical behavior only in the limit of an infinite sepa- dynamics. Ife;> ¢ at timet thene; =0 at timet+1 and the
ration of time scales, i.e., if some suitable paraméteg., g nearest neighbors of siteéncrease their value of;/q. At
the dissipation and the driving rate in sandpile modéls  the generic scale these quantities have the va;h@‘@sand
the temperature in some growth modé@, etc) is set to 5. The height of the stable sites is less thdfl — 6™,
zero. These results suggested a new definition of 80@s  for the critical sites the energy lies betweet — 5z and
thg_ theory of dynamlcal processes that lead a system to thoegk) while for unstable sites it is larger thau’gk). We study
critical steady state if the critical value of the control param-y« hehavior OE((:k) andse® under the renormalization flow

eter is zero. i
The stabilizing effect of a threshol8] in the class of of the DDRG that could be formally written as

sandpile models is discussed by introducintpeal rigidity
defined as the ratio between the critical energy and the am-
plitude of the external perturbations= ¢/ de. A finite rigid-
ity allows the system to assume a large number of metastable
configurations and these let the process show a power-law ) ) » ) )
distribution of avalanches. In Rei8] it has been shown by Wherf p k(de'ls'ty of critical sites and P
means of numerical simulations that in the limit-0 the  =(P1,p5).ps?,p4) (pn is the probability that in a top-
system becomes a diffusive one characterized by only infiPling the energy is distributed exactly tmearest neighbors
nite avalanches. In this paper we show how, in the frameare the parameters characterizing the state at the generic
work of the so-called dynamically driven renormalization Scalek. In principle, we have to couple these two equations
group (DDRG) [9,10]1 a finite r|g|d|ty in the microscopic to those that determine the renormalizatiorpéﬁ‘) and P(k),
dynamics is crucial in order for the system to reach spontafor the sake of simplicity, having extended the parameters
neously a critical stationary state instead of a diffusive onesPace, we assume that the flow of the new parameters is
The basic idea is that at large scale the value of the rigidityrthogonal to the space defined by the old ones. We then
does not depend on the microscopic value and that thigccordingly fixp® and P to their fixed-point valuep*
“coarse-grained” value allows for a nonambiguous distinc-and P* as computed in Ref[9]. Their values arep*
tion between a diffusive and a SOC system. =0.468 andP* :(0.240,0.442,0.261,0.057). The validity of
this approximation will be checked by numerical simula-
tions. Our transformation will have the form

s D00 5p00; 50 PL)

58(k+1):g(8((:k) ,58(k);p(k)’p(k)), 1)

Il. THE RENORMALIZATION OF THE RIGIDITY

. . . . K1) e (0 5. (K)-
In sandpile models we assign an integer variatyn- et V=1(e{9,56M;p*,P¥),
ergy”) ; on each sita of a d-dimensional hypercubic lat-
tice. At each time step an energy grain is added on a ran- skt =gl 5s00; p* P¥), 2

domly chosen site, and then the system is allowed to relax
according to a particular stability criterion depending on aThe symbols used are shown in Figs. 1 and 2.
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FIG. 1. Critical, stable, and unstable sites. g1p2
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Let us consider now a single path as an example of the FIG. 3. One of the possible time evolutions starting fromaan
transformation we want to obtain. We have g2 cell char- =3 configuration and transferring energy outside of the cell; for
acterized by a labet specifying the number of critical sites. €€y step the relative probability is indicated.

The a=1 configuration is not considered because span-

ning rule that imposes the exclusion of those processes thayhere P; , are the probabilities relative to time evolutions
do not relax within the cell before they transfer energy out-that transfer energy outside of the cell, whitg " refers to a
side. Eve(y conflgurat!on has'a mean height ,) that We  process that let quanta going throughn sides.

ca!culate in the follpwmg section. One .of the po.55|b.le eV0- e compute now the average energy per site in all the
lution from the configuratiorr=3a state is shown in Fig. 3. cqndiqurations. We generalize the simple mean-field argu-

This means that at the scaier 1 the mean height of the e described in Ref11], making the simpler nontrivial
considered cell is critical with probability assumption for the probability distribution of the energy:

P(¢)=a+be. The normalization

(a) * 1 *1 *l *
T=W,25(p )gpz Zps 5p2- ©)

f ‘de P(e)=1, (5)
As a matter of fact, the cell has a probability to be a 0
critical site at the scal&+ 1. The complete renormalization
flow is therefore a sum over all the configuration and over all )
the possible paths of terms like(e®,). In the same pro- IMPlies thatb=2(1-ae)/ec. _

cess, we observe that with probability the quantity given The average energy is then expressed in term of the pa-
outside of the cellge®*1), is (3/2)6e™3 flows of energy rametera,

52 are lost outside the cell passing through two sides. It

means that for this transformation we have to distinguish

paths transferring the same energy through a different num- _ % _ E L
ber of sides. The general transformations are (e)= , deeP(e)=gec—gaec. ©)
elTV=23 w,(p*)|(e¥) X Pi,a(P*)}, Following Ref.[11] we find thata=0.277k,. The average
“ ! energy of stable and critical sites is then,
n
58(k+1):2 W, (p*) 2 PP'S](P*)_&(I() , (4) ec— e
a i ' m j de e P(¢)
(& Datanie=—
_ _ €)stable= ~ rz —se
o=2 o=4 f % e P(s)
@ e @ e
g.— O 2
o110 e O f de a8+—282(1—asc))
0 E¢
W2=4p2(1_p)2 w =p4 - gc— O 2
j de a+—28(1—asc))
o=3a o=3b 0 e
2 1 de (4 5
® ° 2 1 % ( 4.5 2
® ® 2w [E a0
ONN ® O a Se
o 1-—(1-ae)
b c c
wzSfip  wedoli-p) , .
= S _ 52,2 2
FIG. 2. Thea configurations with relative statistical weights. (e) 3 68( ! 4a gc| T O(82)%, )
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FIG. 4. Timet: the probability relative to the paths in the figure
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If we puta=0.277k in these expressions we obtain

(&)stapie=0.6205¢.—0.5395%,

<8>critical =g.—0.17856¢.

(8) c c
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FIG. 6. The behavior of the critical energy® at the scale in
the BTW sandpile model.
Skt D=c 56, (14)
where the coefficienta,b, and c obviously depend on the

fixed point parameters. If we divide the two equations, re-
calling the definition of the rigidity, we obtain

b

=2 o (15

The fixed point of the rigidity corresponds to settingy*%
R S
=rR=r*

©)

(10

(16)

The average energy per site for different configurations carfhe following section deals with the calculation of the coef-

now be calculated as

1
(8a=2)= Z[Z (&)critical T 2 (&) stable] = 0.810e . — 0.3596¢,
(11

1
(8a=3) 22[3 (&)critical T (€) stable] = 0.905¢ . — 0.2695¢,,
(12

(€a=4)=(€)critical=&c—0.17850e..

Equations for the renormalization flow have the form

a(ckﬂ):asgk)—b 5e®),

5 ol
O O

O
O

@
O

O
O

13

ficientsa,b, andc.

IIl. ANALYTICAL RESULTS

To calculate the coefficients b, andc we have to distin-
guish between four different kind of configurations, each one
with the relative weightsv,(p) as calculated in Ref9].

a=2. We consider at time one of the toppling repre-
sented in Fig. 4 and possible developments at tiré in
Fig. 5.

All the paths described transfer energy outside the cell;
the associated probabilities are given in captions. Configura-
tion a=2 then contributes with the term

ed " V=w,_o(p)(e'2,

1 1 3
Zpl+ §p2+zps+ P4

X +...,

17

1 5
§p1+ 6p2+ P33+ P4

to the renormalization of the critical energy. Moreover, each

FIG. 5. Timet+ 1: the probability associated with the paths in of the described paths transfer only a quantum of energy

the figure is3p;+ 2p,+ P3+ Pa-

outside of the cell, so
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FIG. 7. Numerical renormalization afe in the BTW.

58(k+1)

5e®

1 1

1 5
X

The details of the calculations regarding paths from con
figurationsa=3a, 3b, and 4 are given in the Appendix.
The final result is obtained by summing all these contrib-

3
=Waz(p)(4p1+ S P2t 7 Pat p4)

Epl+ 6p2+ Pzt P4

+oeee (18

utes that we have explicitly calculated with the respective

%)

FIG. 9. Numerical renormalization afe in the Zhang model.

10°

We then find that the fixed point spontaneously reached
by a sandpile model corresponds to an infinite value of the
rigidity. It means that every finite value for the microscopic
dynamics renormalizes to an infinite one on a large scale.

The difference with a diffusive system is now clear: in the
diffusive case a particle added from outside can always go
out of the system from the boundaries, while in a SOC sys-
tem this is avoided by the value of the rigidity as bigger as
observed from a large scale.

weights. We find for the coefficients the following values: t:
Iy
a=0.26-0.03, b=0.10+0.02, c=0.26+0.05. @te| (@re| -@re
(19 ole| [Ole] |[Ole
We finally obtain thata and c are equal, even though the t+1:
errors associated are relatively large. These errors are related
to the parameters of the fixed point. Since they have only A A
three significant digits, this results in an error of order 10 a: Oler Ol® [O@r
O|® Ol@e [Oe®
0.70
o A i
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FIG. 8. The behavior of the critical energy at a generic skale

for the Zhang model.
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FIG. 10. Timet: the probability relative to the paths in the figure
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from the boundaries at a generic sctleCritical energy is
defined as follows: we consider an external perturbation on a
site in a coarse-grained cek cell) of sizelx 1% and we FIG. 13. Possible paths from evet

look at the avalanches starting from this coarse-grained cell. . . . _

If the avalanche transfers energy outside the giveell we  ishing value. Numerical simulations of coarse-grained sand-
compute the average energ{ of that k cell before the pile models confirm this picture.

toppling; as a matter of fact, that cell is critical with a

probability given by the frequency of the avalanches trans- ACKNOWLEDGMENTS

ferring energy outside thk cell itself. Moreover, we define The authors acknowledge EU Contract No. FM-

the energy transferrede ) at the scalé!) as the number of RycT980183 and G.C. acknowledges FET Open project
grains going outside thé& cell divided by the number of ~og|N 1ST-2001-33555.
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IV. NUMERICAL RESULTS o®r 0 @@ @ e 0 |ew
We present here the results of simulations made on BTW ¢ @ @ ® o © @
[1] and Zhang[13] models. We have measured for these ool o oo g
systems the critical energy and the average flow transferred+3 ®o| [0 o e
(

1 @ &)

scaling. . . APPENDIX
If we look at numerical resultgFig. 6) we note that the _ _ _
critical energy at large scale is the average engtgyof the a=3a. In Fig. 10 we show all the possible paths starting

system and this is not surprising since at the scale of th&om the perturbation of the critical site.
system size this is exactly what we compute. As for the be- The probability relative to the first event at tinies the
havior of 3 (Fig. 7) one gets that in the limik— it goes ~ Same as beforg,p;+ 3 p,+ ips+ps. At time t+1 we have
to zero. This result confirms the idea that the fixed-point@ zP1+ gp, for the first two events in Fig. 1G5p,+7ps
value for the rigidity is infinite, signalling a clear difference for the third (they are distinguishable only with respect to
with respect to usual diffusive systems. The same qualitativéenormalization of 5¢); (b) sp,+zps for the first two
results are obtained for the Zhang mofie8] (See Figs. 8 events,zps+p, for the third;(c) zp;+5p2.
and 9. At time t+2 we haveip;+ 3p,+ 3p3 for the first two
andip,+ 33+ p4 for the third; in the renormalization f,
we have to consider only the sufp;+ 2 p,+ p3+ p,4. So we
can write

In summary, we have investigated both in the framework
of the dynamically driven renormalizaton group scheme and sk @ (p)(s(k)
by numerical simulations, the role of the so-called local ri- ¢ a=3 a=3
gidity in sandpile models. The local rigidity is defined as the

V. CONCLUSIONS

1 1 3
Zp1+ Epz"‘ Zp3+ Pa

: " , 1 5 1 1
ratio between the critical energy and the amplitude of the < Zp 4+ =P+ Dart 1+<_ += )H
external perturbation, both at the microscopic scale. It turns 2P g2 PaT P 4P17gh
out that, under the renormalization flow equations of the 4. (A1)

DDRG, the local rigidity renormalizes to an infinite fixed-
point value both for the BTW model and the Zhang model, TABLE I. Probabilities relative to the events in Fig. 13.
while for a typical diffusive system one would expect a van-

t+1 t+2 t+3
© Oind O® &) Bpiripytips  EpitEp,  EPatiporis
o0 o0 2 §Pz+§p3 §P1+§pz zlp1+§lpz+zp3
) 61P2+Zp3 §pz+§p3 5P2+ 3P3+ Pa
(4) ZP3+ Pa §P213P3
) ‘ = 2P11 P2 elpz 2Ps
6 @ @ o (6) P37+ P4
M %pl"‘%Pz

FIG. 12. Eventsa andb for the «=4 configuration.
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and +(1 +1 . 4}(1 +1 )
=P2T5P3TPs| 5[z P1T zP2
sek+b) @ 11 3 1 6 2 3jlam 6
5e 0 = T Wazs(p)| z Pt 5Pat 7 PstPaf || 5P 1 5
¢ X(§p1+gpz+p3+p4 o (A2)
+ L + L + ! + {(1 + !
2P2T 4P| T g2 g Ps ]| 4P 32 for the contributions coming from the=3a configuration.

a=3b. We can compute the probabilities shown in Fig.

1L (2+1)+ L ot Spatpa o 11
2P a2 P2t 5P3TPs| 5 . e .
4"3 672 2" T2 At time t we have to distinguish between two kinds of
1 1 1 5 events: the toppling on a single sitihis term is considered
+ Ep2+ Zp3> §p1+6p2+ P3+ Pa two times to include the toppling on the other sitend the
one on two sites. The statistical weights amep{+3p,
1 1 1 1 3 +3ps) and (Gp,+ 3 ps+ pa), respectively. At time+ 1 both
TPt p4) [ (Zp1+ 3P2tgPs){3t1L the events leave one flow going outside the cell, so we have:
|
1 1 3 1 5
ot V=t wla(p)(eels [Z(Zpﬁ P2t gPstPaf{5P1t g ¥ Pat P

1

1
TlgP2t 5Pt Ps T (A3)

1 5 \?
1- §p1+gp2

Selk+1)
= +wils(p)

1 1 3 1 5
2 2Pt 5P2F 7Pt Paf| 5P1F 5+ P3t Py

5™

1 1

+ gp2+§p3+p4 +-- (A4)

1 5 \2
1- Epl"‘gpz

a=4. In a cell with all critical sites the number of possible time evolutions grows enormously. In Fig. 12 we show the first
two possible events, with probabiliti§a) = 7 p,+ 5 p,+ P53 andp(b) = §p,+ 5 ps+ p,. The paths coming frora are shown
in Fig. 13 and the relatives probabilities in Table I.

Now we have to compute 224 paths from thevent. The final result, avoiding details, for the renormalization of the

critical height is

1 1 1 1 \2
1+ Zpl"'gpz + Zpﬁ‘gpz

- 1 1 1 \(({1 5
ec =t Wag(p)) 2| 7Pat 32t 7 P3| 5Pt gP2t Pat s

1 1 1 \? (1 1 3 1 1 1
+ 5p2+§p3+p4 1- 2P Zpl+6p2 Zpl+€p2 §p1+€p2 . (A5)
If we introduce the quantities
1 1 3 1 5 1 1 1

M= g Pt 5Pt 7Pt Pay M= 5P1t P2t Pt Ps, M= 5Pt 5Pt 4 Ps,

1 1 1 1 1 1 1
4= g P2t g P3: M= P1t gPot 3 P3, Te= g P2t 5P3t Pa,

1 1 1 1 1 3 1 1
7T7EZp1+gP2, Wszipﬁ‘gpza W952P3+P4, WloEZpﬁ‘ipz"'Zps:

then we can write down the renormalization &f as
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SEK+D) 4 4 5
W: . +Wa=4(p)[2 5| Wyt 74| 2 W7+ 74| L+ 770+ §7T5+ 3 e + 77 §775+ 2176 + My
3 3 4 5
+m,(2+ 1)+, §+ §+ > g+ g |+ Ty §+1 5+ 376 +arg| | 2+ 3 5+ 376
3 5 7 5
+7T7772+7Tg E‘f‘l 7T7+7T4 §+§7T5+Z7TG +7T4 §7T5+Z776
5 5 3 5 4
+ g §+ 1 775+§'n'6 + | Ty T3t Ty 7T2+37T5§7T6 + g §7T5+ §’n'6 +
>, 1, 5 1 5 4
+7T6>< 7T10_1_6p1 +2 7T77T5+Zp17T4 57T5+§’7TG +2 7T7’7T6+Zp1779 §7T5+§7T6
) 17 1 B B 35
+ (2w w4t my)| 1075+ 3 e + 27T7Zp1+ 75| my+ 2(my+ wg 7s) | Swg+ 1576
N 3
+(2 g Wyt TY) 51754- 56| |[- (AB)
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